首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   109篇
  免费   5篇
化学   79篇
晶体学   2篇
力学   9篇
数学   1篇
物理学   23篇
  2023年   2篇
  2022年   2篇
  2019年   1篇
  2017年   1篇
  2016年   2篇
  2015年   4篇
  2014年   1篇
  2013年   6篇
  2012年   4篇
  2011年   12篇
  2010年   6篇
  2009年   5篇
  2008年   12篇
  2007年   7篇
  2006年   11篇
  2005年   5篇
  2004年   7篇
  2003年   4篇
  2002年   4篇
  2001年   3篇
  1999年   2篇
  1994年   1篇
  1992年   2篇
  1988年   1篇
  1985年   1篇
  1982年   2篇
  1978年   1篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1974年   1篇
排序方式: 共有114条查询结果,搜索用时 640 毫秒
11.
12.
Ternary rare-earth iron silicides RE(2-x)Fe4Si(14-y) (RE = Y, Gd-Lu; x approximately equal to 0.8; y approximately equal to 4.1) crystallize in the hexagonal system with a approximately equal to 3.9 A, c approximately equal to 15.3 A, Pearson symbol hP20-4.9. Their structures involve rare-earth silicide planes with approximate compositions of "RE1.2Si1.9" alternating with beta-FeSi2-derived slabs and are part of a growing class of rare-earth/transition-metal/main-group compounds based on rare-earth/main-group element planes interspersed with (distorted) fluorite-type transition-metal/main-group element layers. The rare-earth silicide planes in the crystallographic unit cells show partial occupancies of both the RE and Si sites because of interatomic distance constraints. Transmission electron microscopy reveals a 4a x 4b x c superstructure for these compounds, whereas further X-ray diffraction experiments suggest ordering within the ab planes but disordered stacking along the c direction. A 4a x 4b structural model for the rare-earth silicide plane is proposed, which provides good agreement with the electron microscopy results and creates two distinct Fe environments in a 15:1 ratio. Fe-57 M?ssbauer spectra confirm these two different iron environments in the powder samples. Magnetic susceptibilities suggest weak (essentially no) magnetic coupling between rare-earth elements, and resistivity measurements indicate poor metallic behavior with a large residual resistivity at low temperatures, which is consistent with disorder. First-principles electronic-structure calculations on model structures identify a pseudogap in the densities of states for specific valence-electron counts that provides a basis for a useful electron-counting scheme for this class of rare-earth/transition-metal/main-group compounds.  相似文献   
13.
Iron(II) poly(pyrazolyl)borate complexes have been investigated to determine the impact of substituent effects, intramolecular ligand distortions, and intermolecular supramolecular structures on the spin-state crossover (SCO) behavior. The molecular structure of Fe[HB(3,4,5-Me3pz)3]2 (pz = pyrazolyl ring), a complex known to remain high spin when the temperature is lowered, reveals that this complex has an intramolecular ring-twist distortion that is not observed in analogous complexes that do exhibit a SCO at low temperatures, thus indicating that this distortion greatly influences the properties of these complexes. The structure of Fe[B(3-(cy)Prpz)4]2.(CH3OH) ((cy)Pr = cyclopropyl ring) at 294 K has two independent molecules in the unit cell, both of which are high spin; only one of these high-spin iron(II) sites, the site with the lesser ring-twist distortion, is observed to be low-spin iron(II) in the 90 K structure. A careful evaluation of the supramolecular structures of these complexes and several similar complexes reported previously revealed no strong correlation between the supramolecular packing forces and their SCO behavior. Magnetic and M?ssbauer spectral measurements on Fe[B(3-(cy)Prpz)4]2 and Fe[HB(3-(cy)Prpz)3]2 indicate that both complexes exhibit a partial SCO from fully high-spin iron(II) at higher temperatures, respectively, to a 50:50 high-spin/low-spin mixture of iron(II) below 100 K. These results may be understood, in the former case, by the differences in ring-twisting and, in the latter case, by a phase transition; in all complexes in which a phase transition is observed, this change dominates the SCO behavior. A comparison of the M?ssbauer spectral properties of these two complexes and of Fe[HB(3-Mepz)3]2 with that of other complexes reveals correlations between the M?ssbauer-effect isomer shift and the average Fe-N bond distance and between the quadrupole splitting and the average FeN-NB intraligand dihedral torsion angles and the distortion of the average N-Fe-N intraligand bond angles.  相似文献   
14.
An unsteady RANS model is developed in order to simulate the complex situations involving both free and bounded flows. This model tuned to catch coherent flow structures is developed both in the k-ε and k-l approaches. The full 3D geometry of a round jet exiting from a reservoir into a pipe has been computed. Periodic conditions are applied in order to compare with an experiments consisting of eight jets exiting in a cross pipe flow. Improvement has been obtained with this URANS turbulence model compared to RANS and good agreement compared with experiment has been obtained. Unsteady phenomena are reproduced by the model and provide more insight into the physical properties of the flow and of the transport of a passive scalar.  相似文献   
15.
We report the first experimental observation of a spatially localized dynamo magnetic field, a common feature of astrophysical dynamos and convective dynamo simulations. When the two propellers of the von Kármán sodium experiment are driven at frequencies that differ by 15%, the mean magnetic field's energy measured close to the slower disk is nearly 10 times larger than the one close to the faster one. This strong localization of the magnetic field when a symmetry of the forcing is broken is in good agreement with a prediction based on the interaction between a dipolar and a quadrupolar magnetic mode.  相似文献   
16.
Hydridosilazane compounds containing Si–N and Si–H bonds can be used as precursors of SiOx materials. The hydrolysis-condensation reactions of tetramethyldisilazane, as a polyhydridosilazane model compound, were investigated by 1H and 29Si liquid NMR spectroscopy. These reactions were carried out at room temperature for up to 120 min in presence of water. The identified products are short linear siloxane species (hydride terminated polydimethylsiloxanes MHDxMH) and cyclosiloxanes. Silicon hydride persistence in the reactional mixture suggested that silazane group is more sensitive to hydrolysis reaction than silicon hydride group. Moreover, additional experiments evidenced that the low steric hindrance of the silicon hydride influences the silazane hydrolysis kinetic. Hence the presence of ammonia released during silazane hydrolysis reaction was demonstrated to be a catalyst of the silicon hydride hydrolysis reaction.  相似文献   
17.
The synthesis of a series of neodymium complexes supported on modified silica is reported. In an initial step the silanol groups were masked by a Lewis acid (BCl3, AlCl3, TiCl4, ZrCl4, SnCl4, SbCl5, HfCl4), and then a soluble arene complex Nd(η6‐C6H5Me)(AlCl4)3 formed in situ was reacted with the modified silica. The supported complexes are active and highly stereospecific for butadiene polymerization; 1,4‐cis insertion is superior by 99%. The catalyst based on a treatment of silica with BCl3 is the most efficient.  相似文献   
18.
Oligomers and polymers containing triazole units were synthesized by the copper(I)‐catalyzed 1,3‐dipolar cycloaddition step‐growth polymerization of four difunctional azides and alkynes. In a first part, monofunctional benzyl azide was used as a chain terminator for the polyaddition of 1,6‐diazidohexane and α,ω‐bis(O‐propargyl)diethylene glycol, leading to polytriazole oligomers of controlled average degree of polymerization (DPn = 3–20), to perform kinetic studies on low‐viscosity compounds. The monitoring of the step‐growth click polymerization by 1H NMR at 25, 45, and 60 °C allowed the determination of the activation energy of this click chemistry promoted polyaddition process, that is, Ea = 45 ± 5 kJ/mol. The influence of the catalyst content (0.1–5 mol % of Cu(PPh3)3Br according to azide or alkyne functionalities) was also examined for polymerization kinetics performed at 60 °C. In a second part, four high molar mass polytriazoles were synthesized from stoichiometric combinations of diazide and dialkyne monomers above with p‐xylylene diazide and α,ω‐bis(O‐propargyl)bisphenol A. The resulting polymers were characterized by DSC, TGA, SEC, and 1H NMR. Solubility and thermal properties of the resulting polytriazoles were discussed based on the monomers chemical structure and thermal analyses. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5506–5517, 2008  相似文献   
19.
Sonogashira coupling reactions of terminal alkynes with Fe[(p-IC6H4)B(3-Mepz)3]2 (pz = pyrazolyl ring) yield Fe[(p-PhC2C6H4)B(3-Mepz)3]2 (2), Fe[(p-Me3SiC2C6H4)B(3-Rpz)3]2 (R = H, 3a, R = Me, 3b), and Fe[(p-HC2C6H4)B(3-Mepz)3]2 (R = H, 4a, R = Me, 4b), a series of new complexes containing "third generation" poly(pyrazolyl)borate ligands. Complex 2 undergoes a fairly gradual iron(II) electronic spin-state crossover with a 30 K hysteresis, whereas complex 3b is an unusual example of a complex with equivalent iron(II) sites in the high-spin form that shows an abrupt 50% spin crossover. For complex 4b, 50% of the iron(II) sites undergo a gradual spin-state transition between 185 and 350 K with an activation energy of 1590 +/- 30 cm(-1) and a T(1/2) = 280 K and, for the remaining iron(II) sites, an abrupt cooperative spin-state crossover between 106 and 114 K. The crystal structures of 4b obtained for each of the three distinct electronic spin states reveal two crystallographically different iron(II) sites, and analysis of the molecular/supramolecular structures indicates that the difference in the degree of pyrazolyl ring tilting in the ligands between the two sites, rather than the strength of the intermolecular forces, play a prominent role in determining the temperature of the spin-state crossover.  相似文献   
20.
The suitability of [{(eta5-C5H5)Fe(eta5-C5H4)}4(eta4-C4)Co(eta5-C5H5)][PF6]2, [1][PF6]2, for use as a molecular quantum cellular automata (QCA) cell is demonstrated. To this end the structure of 1 in the solid state and the conversion of 1 to mono- and dicationic mixed-valence complexes have been accomplished. The latter compounds have been isolated as pure materials and characterized by IR, EPR, and M?ssbauer spectroscopies and single-crystal XRD (monocation only) and magnetic susceptibility measurements. Near-IR spectra demonstrate the mixed valence character of the cations (valence trapped on the IR, EPR and M?ssbauer time scales), and the energies of the intervalence charge-transfer bands provide a measure of the hole hopping frequency.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号